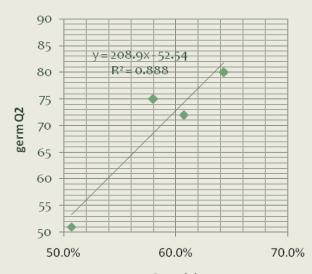
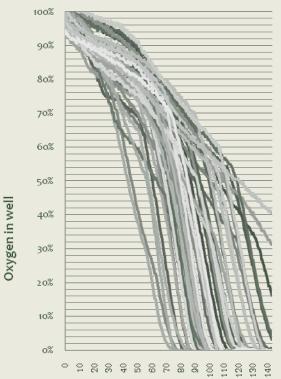


Q₂ System

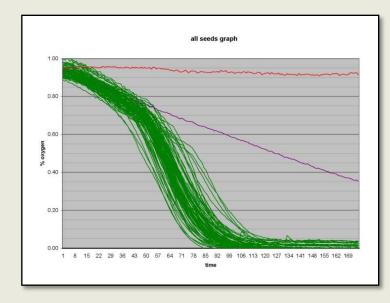

RR Analytical


	Lot A	Lot B	Lot C	Lot D
Q2 LOT infor	mation			
lot#	PH09-154/1	PH09-154/5	PH09-182/1	PH09-182/6
date test	12/6/2009	12/6/2009	12/7/2009	12/7/2009
lcm analist	johan	johan	johan	johan
curveit analist rcm analist	ann	ann	ann	ann
rcm analist	jva	jva	jva	jva
Q2 VIGOR an	alysis %			
germ ok	80	75	72	51
germ lin	7	3	8	11
germ incompl	1	3	10	30
germneglect	11	18	10	8
germination	100	99	100	99
dormant	0	0	0	1
dead	0	1	0	0
correct	80	75	72	51
usable	89	82	90	92
efficiency	78	70	72	65
c.nacity	10	10	12	ua
Q2 VALUES a	nalysis			
SMR				
average %	0.53	0.52	0.56	0.52
std dev %	0.27	0.15	0.62	0.31
count	147	131	131	93
max conf int %	0.62	0.57	0.78	0.65
min conf int %	0.44	0.46	0.35	0.4
IMT				
average	62.85	64.26	67.83	67.17
std dev	21.64	17.69	22.74	25.22
count	147	131	131	93
max conf int	69.85	70.45	75.65	77.43
min conf int	55.84	58.06	60	56.92
OMR				
average %	2.42	2.38	2.26	2.24
std dev %	0.35	0.44	0.4	0.33
count	147	131	131	93
max conf int %	2.54	2.53	2.39	2.37
min conf int %	2.31	2.23	2.12	2.11
COD				
COP	9.81	9.41	10.2	9.41
average %				
std dev %	3.87	4.14	3.93	3.73
count	147	131	131	93
max conf int %	11.06	10.85	11.55	10.93
min conf int %	8.55	7.97	8.86	7.9
RGT				
average	98	99.64	106.9	106.7
std dev	18.05	15.41	17.98	20.83
count	147	131	131	93
max conf int	103.8	105	113.1	115.1
min conf int	92.17	94.25	100.7	98.18
НОМ	40.05	45.44	45.00	00.00
value	18.05	15.41	17.98	20.83

An example on 4 rice samples

Correlation between germ and Q2 data

Germ lab Graph of 1 rep


Hours

RGT value of the 4 samples (relative germ/time)

RGT value

Different species
have been
thoroughly tested
by Rhino Research
and protocols as
well as specific
high-end trainings
are available

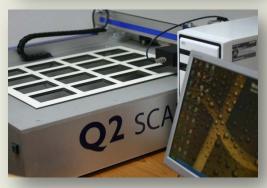

A single seed oxygen consumption measurement system

- ✓ It has the possibility to compare different samples before and after storage, coating, priming, storage...
- ✓ It is an increasing stress test
 - Each molecule of oxygen that is consumed increases the stress factor.
 - Can be combined with other stress factors such as water stress, temperature stress, imbibition stress, chemical stress...
- ✓ It is a holistic view on vigor
 A perfect way to measure the different aspects of vigor such as germination speed, stress tolerance, healthiness, yield potential.
- ✓ It is an extremely fast test Results can be obtained from 24 hours till 3 to 4 days depending on the focus and the species.

Developed by TNO / Fytagoras

Engineered by ASTEC Global

Mastered by Rhino Research


The Q2 is a single seed oxygen consumption system. Because oxygen consumption is directly related to energy production, this technology gives us a perfect view on different quality aspects of seeds such as imbibitions time, speed of germination, homogeneity and energy availability during the germination.


The Q2 system is thus a revolution in seed testing for basic research and commercial operations alike. It provides a fast and accurate measurement of different germination aspects of a seed lot.

In addition Q2 data is more robust and defining than traditional germination tests. You will easily determine dead, dormant or actively germinating seeds.

Although it currently does not provide specific details on seedling abnormalities, the Q2 data can give quicker and more accurate indications of the vigor and homogeneity of a seed lot.

Contact person: Johan Van Asbrouck
Email: johan@rhino-research.com
Cell phone: +66 81 971 2411

